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Generation of long-range correlations in large systems as an optimization problem
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We propose an efficient method of generating long-range correlations in large systems. The development of
this method was motivated by the problem of constructing an optimal model for a large-scale porous medium.
There are typically long-range correlations in the properties of such porous media, such as their permeability
and porosity, for which there are usually only limited data. The optimal model must not only honor (preserve)
the available data and their correlation function, but also accurately predict the future behavior of fluid flow in
the media. We formulate the problem of generating the long-range correlations as one of optimization, and
utilize simulated annealing to generate a d-dimensional array which contains the correlations and honors the
existing data. The optimization process is based on the data’s correlation function. The method is, therefore,
free of the many numerical difficulties and/or limitations that most previous techniques suffer from. It is
completely general and may be used for generating long-range correlations with any type of correlation
function, in both isotropic and anisotropic media. Representative examples are presented, and the method’s

efficiency and accuracy are discussed.
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I. INTRODUCTION

Long-range correlations are ubiquitous in nature. Ex-
amples include the correlations that exist in the porosity, per-
meability [1-3], and elastic constants of, and wave speeds
[4] in, field-scale porous media, the distribution of fluid ve-
locities in turbulent flow [5], and in the human heartbeat
rates [6,7]. In many cases, such correlations are characterized
by power-law correlation functions and follow the statistics
of the fractional Brownian motion (FBM) B(r), for which the
two-point correlation function C(r) is given by

C(r)=C,r*", (1)

where C;=C(r=1). Here, H is the Hurst exponent that char-
acterizes the type of correlations. For H>1/2 (H<1/2) one
has persistent or positive (antipersistent or negative) correla-
tions in the successive increments of the FBM, while for H
=1/2 the trace of an FBM follows Brownian motion and,
thus, the increments are uncorrelated. Figure 1 presents
samples of one-dimensional (1D) FBM arrays for two values
of the Hurst exponent H, which exhibit the typical patterns
seen in 1D FBM arrays for H both above and below 0.5.
While the Hurst exponent is positive, one may view Eq. (1)
more generally and allow H to represent a parameter than
can take on both positive and negative values. Another im-
portant property of a FBM is that its successive increments
follow a Gaussian distribution (albeit with long-range corre-
lations).

Modeling of correlated systems with power-law correla-
tion functions entails accurate and efficient generation of the
correlations in the models. Accuracy is important in the
sense that the correlations must be preserved in every part of
the system and not in, for example, a part of it. Efficiency is
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crucial because the size of the systems to be modeled is often
very large. For example, the geological models that represent
the distribution of the porosities and permeabilities of oil
reservoirs are typically represented by a three-dimensional
(3D) computational grid with a few million grid points or
blocks. In addition, due to the stochastic nature of such sys-
tems, one must generate several realizations of them and
average the properties of interest over all the realizations.
Therefore one must generate many large 3D correlated arrays
that are characterized by Eq. (1) or other types of correlation
functions.

Several methods have been suggested in the past for gen-
erating long-range correlations with power-law correlation
functions. A convenient representation of such correlations is
through their spectral density S(w), the Fourier transform of
their covariance. For a d-dimensional FBM for which the
correlation function is given by Eq. (1), one has

S(w) = (liLdjyﬂ,,z, ()

> o
i=1

where w=(wy,...,w,), and a(d) is a d-dependent constant.
Equation (2) provides a method for generating a FBM array
with correlated numbers that follow the correlation function
given by Eq. (1), using a fast Fourier transformation (FFT)
technique. In this method, one first generates random num-
bers, uniformly distributed in [0,1), and assigns them to the
sites of a d-dimensional lattice. The FT of the resulting
d-dimensional array is then computed numerically and the
results are multiplied (filtered) by N/m . The inverse FT of
the results represents an array of correlated numbers with a
correlation function given by Eq. (1). To avoid the problem
associated with the periodicity of the array arising as a result
of using FT one must generate an array with a size much
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FIG. 1. One-dimensional FBM arrays for H=0.3 (top) and H
=0.8 (bottom).

larger than the actual size to be used in the simulation of a
physical system and use its central part. This reduces greatly
the efficiency of the FFT method and limits its use to rela-
tively small systems [8,9].

Makse et al. [8] and Pang et al. [10] modified the FFT
method for better accuracy and efficiency. Since the correla-
tion function (1) has a singularity at r=0, they considered a
slightly different correlation function,

d —y2
C(r) = (1 + rf) , (3)
i=1

which, in the limit r— o, has the same qualitative behavior
as Eq. (1). The FT of the correlation function given by Egq.
(3) can be determined analytically, and is given by

27 ()P
S(“’):r(ﬁ+1>(5> Ky(o). ()

Here, 8= %(y— d), o= |w , Kg is the modified Bessel function
of order B, and I' is the gamma function. For w<<1, one has
the asymptotic relation that K g(w) ~ wP. The correlated array
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FIG. 2. The correlation functions for 1D FBM arrays of size n
=2000, shown in Fig. 1, with H=0.3 (squares) and H=0.8 (O).
Dashed lines show the fit of the data.

generated based on Egs. (3) and (4) corresponds to a FBM
with the Hurst exponent, H=1 —%y.

Voss [11] suggested another technique for generation of
the FBM arrays, which is usually referred to as the succes-
sive random addition (SRA) method. In 1D one starts with
the two end points in the interval [0,1], and assigns a zero
value to them. Gaussian random numbers A, are then added
to these values. Next, new points are added at a fraction r of
the previous stage by linearly interpolating between the old
points, and adding Gaussian random numbers A, to the new
points. Thus, given a sample of N, points at stage i with
resolution A, stage i+1 with resolution r\ is generated by
first interpolating N;,;=(N;—1)(1/r—1) new points from the
old ones, and then adding Gaussian random numbers A, to all
of the new points. At stage i with r <1, the Gaussian random
numbers have a variance, 0'12 ~ 2 consistent with the FBM.
For example, with r=1/3 and N;=5, the old (o) and new (n)
points are in the order (onnonnonnonno), so that there are
N;;1=8 new points in the array. The process is continued
until the desired length of the data array is reached. The
method can easily be extended to any dimension. It is not,
however, very efficient if large 3D correlated arrays are to be
generated. In addition, extending the method for generating
anisotropic 2D or 3D arrays is difficult (see below).

One may also utilize the Weierstrass-Mandelbrot function
[9,11,12] to generate FBM arrays. In this method one first
divides the interval [0,1] into n—1 equally spaced subinter-
vals, where n is the size of the array to be generated, and
assigns zero value to all the points in the interval. Then, to
point i at a distance x; from the origin one adds a random
number generated by the Weierstrass-Mandelbrot function
W(x) defined by

©

Wx)= > Cir sin2arx; + ¢)), (5)

Jj=—°

where C; and ¢; are random numbers distributed according
to Gaussian and uniform distributions, respectively, and r is a
measure of the gaps between the frequencies, which is usu-
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FIG. 3. The correlation functions for 2D FBMs of size n=200
X 200 with H=0.3 (squares) and H=0.8 (O). Dashed lines show the
fit of the data.

ally chosen to be small so that the gaps are also small. The
variance of C; is proportional to r¥H_and the random phases
¢; are distributed uniformly on [0,27]. Usually, the infinite
series in Eq. (5) is approximated by a finite one but with a
large number of terms (typically, —70<j=<70) to ensure its
accuracy. Although the power spectrum of the resulting array
is discrete and does not contain all the frequencies, its spec-
tral density (in 1D) is still proportional to @™+ in agree-
ment with Eq. (2). This method is not efficient at all in 2D or
3D [12]. It is also not clear how to extend it to anisotropic
systems.

In this paper, we propose an efficient method for genera-
tion of large d-dimensional arrays with long-range correla-
tions. The method is applicable to any type of correlation
function, although the numerical results that are presented in
this paper are for those for which Eq. (1) holds. It can be
used for generating long-range correlations in both isotropic
and anisotropic systems. As explained below, one main ad-
vantage of the method is that, not only can it generate long-
range correlations in both isotropic and anisotropic systems,
but can also preserve the observed data for parts of the same
systems (see below). None of the previous methods can pre-
serve the observed data. Although kriging methods [13] can
also preserve the observed data and generate d-dimensional
arrays with a given correlation function, they are determin-
istic techniques which can generate only a single realization
of a system for which limited data are available and the
structure of the correlation function is known. As mentioned
above, in practice one often needs to generate many realiza-
tions of the same system.

The plan of this paper is as follows. In the next section we
describe the method. Section III presents the results and dis-
cusses the efficiency and accuracy of the method.

II. GENERATION OF LONG-RANGE CORRELATIONS AS
AN OPTIMIZATION PROBLEM

The method was motivated by an important physical
problem, namely, modeling of large-scale porous media,
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FIG. 4. Two-dimensional FBM distributions of size n=200
X200 for H=0.3 (top) and H=0.8 (bottom), the correlation func-
tions of which are shown in Fig. 3.

such as an oil reservoir. One usually has some data for some
of the reservoir’s properties, which usually belong to two
classes. In one class are the data for static properties—those
that do not change with time—such as the permeability and
porosity that are typically measured or estimated along cer-
tain wells in the reservoir. Data for dynamical properties are
in the second group, and include the reservoir’s rate of oil
production and the pressure(s) at the producing well(s). The
question then is: Given some (limited) data for the static and
dynamical properties of an oil reservoir (or any large-scale
porous medium), what is the reservoir’s opfimal model that,
(1) honors (preserves) the static data in the areas that have
been measured; (2) provides accurate estimates of the same
properties in the rest of the reservoir; (3) reproduces the data
for the dynamical properties, and (4) provides accurate pre-
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FIG. 5. The correlation functions for 2D anisotropic media of
size 200X 200. Squares and ¢ show the results for H=0.3 in the x
and y directions (the x direction is parallel to the lines of this page),
while A and O indicate those for H=0.8 in the same directions,
respectively. For H=0.3 we set C,;/C,;=8, while for H=0.8,
Cy1/Cy=20.

dictions for the reservoir’s rate of production in the future?

To address this question, optimization methods, and in
particular simulated annealing (SA) [14], have been utilized
[3,15]. One advantage of the SA method is that the static
properties do not have to be normally distributed (an as-
sumption made in the classical models of oil reservoirs
[2,3]), and may follow any statistical distribution. Moreover,
most models of large-scale porous media are constructed
based on the assumption that the static properties are spa-
tially stationary, whereas the data that follow, for example,
the statistics of FBM, are not spatially stationary (only the
increments of FBM arrays are stationary). However, the pre-
vious works on the development of the optimal model of a
large-scale porous medium ignored the long-range correla-
tions in the permeability, porosity, and other static properties.
The reason was apparently that it was not clear how to in-
clude additional constraints in the “energy” or objective
function (that optimization methods minimize) to ensure that
the nature of the correlations is preserved. As a result, al-
though the optimal models may honor the existing data, they
destroy the correlations in the interwell regions (for which no
data are available).

The common methods of generating correlated data de-
scribed in the Introduction cannot be used in the optimization
process, because at each of its steps one changes the values
of the properties to be optimized (for example, the perme-
ability, porosity, etc.) for only one block or grid point in the
model. It is, therefore, not feasible to generate, at each of the
steps, an entirely new array of correlated data, and use only a
single value from the large array. In addition, since one must
also honor (preserve) the existing data, the array to be gen-
erated must be correlated with them, which is clearly not
possible to do with the methods described in the Introduc-
tion.

This motivated us to develop an optimization method for
generating long-range correlations, based on the SA method
(although any other suitable optimization method may be
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FIG. 6. Two-dimensional anisotropic FBM distributions for H
=0.3 (top) and H=0.8 (bottom), the correlation functions of which
are shown in Fig. 5.

used). In our ongoing work [16] we are developing efficient
computational algorithms for developing an optimal model
of an oil reservoir based on limited data for the porosity and
permeability, as well as the pressure(s) at the producing
well(s) and seismic data, ensuring that the model preserves
the correlations that are indicated by the static data. The
method that we describe in this paper is applicable to both
isotropic and anisotropic systems.

A. Isotropic systems

We describe the method for generation of long-range cor-
relations that are characterized by Eq. (1). The method is,
however, completely general, so long as the functional form
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FIG. 7. An example of 2D anisotropic media with H,=0.8, H,
=0.3, and Cy,;/Cy =1.

of C(r) is known. The inputs are the Hurst exponent H (ob-
tained from the analysis of the data) and C, (which controls
the structure of the array; see below). Then, similarly to the
SA method [12], we define an objective or energy function E
given by

E=), llog C(r) — 2H log(r) — log(C))|, (6)

which we minimize using the SA algorithm. Clearly, any
functional form for the correlation function C(r) may be used
in defining E. In addition, note that the algorithm can also be
used for generating short-range correlations as well (all one
must do is using a function with a cutoff length scale for the
correlations), although the generation of such correlations is
typically simple enough that using a SA method is not effi-
cient. The following steps are then taken in order to mini-
mize E and generate the correlated array.
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FIG. 8. The directional correlation functions of the 2D aniso-
tropic FBM shown in Fig. 7, for H,=0.8 (squares) and H,=0.3 (O).
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FIG. 9. The correlation functions for 3D FBM arrays of size n
=60 X 60X 60 with H=0.3 (squares) and H=0.8 (O).

(1) We begin with a Gaussian distribution for the array or
lattice (i.e., white noise without correlation). However, any
other initial distribution may be used (see below).

(2) The correlation function C(r) is then computed. Note
that if there are some actual data distributed in the system
that must be honored (preserved), their presence is taken into
account when the correlation function C(r) is computed. To
speed up the computations, two tricks are used. (i) Except for
the first iteration in the optimization process, we compute the
change in C(r) between successive iterations of the SA, not
C(r) itself. This reduces the simulation time very signifi-
cantly. (ii) C(r) is computed at selected values of r=r; with
i=1,m,m*,m,...,~N, where N is the array’s size, and m
=1 is an integer, instead of computing C(r) at r; with i
=1,2,...,N, which also reduces the computation time sig-
nificantly. We have, however, confirmed that the results are
the same as those when we compute C(r) at every r; from
i=1to i=3N.

(3) The initial energy E,q is computed, and the initial
“temperature” Ty is set to be To=E .

(4) A site i on the d-dimensional lattice is selected at
random, and the value B(r) associated with it is changed.
The algorithm for doing so in 1D is to change B(i) to either

Boew(i)=B(i+1)+R (7)
or
Bnew(i)zB(i_ 1)+R, (8)

with equal probabilities, where R is a random number se-
lected from a Gaussian distribution with a unit variance,
which we found to result in accurate FBM arrays with good
computational efficiency. The above algorithm is easily gen-
eralized to 2D and 3D. Thus, for example, in 2D, we first
select the x or y direction with equal probability. If, for ex-
ample, the x direction is selected, we change the value B(i, )
attributed to site (i,j) according to By, (i,j)=B(i+1,j)+R
or Bw(i,j)=B(i—1,j)+R, with equal probabilities, and
similarly for the y direction. Equations (7) and (8) are moti-
vated by the fact that, as mentioned earlier, the successive
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FIG. 10. Three-dimensional FBM distributions of size n=60
X 60X 60 with H=0.3 (top) and H=0.8 (bottom), the correlation
functions of which are shown in Fig. 9.

increments in a FBM array follow a Gaussian distribution,
and selecting R to be a Gaussian distribution ensures that this
property is automatically built into the array. However, more
generally, one may use other suitable algorithms, instead of
Egs. (7) and (8), or select the random number R from other
suitable distributions, depending on the nature of the corre-
lations.

(5) The new energy, E,., and the change in the energy,
AE=E, .,—E.q are computed. If E, ., <E.q4, the change is
accepted and we go back to step (4) and set E g=Fpey. If
E. > E4, the change is accepted or rejected using the Me-
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FIG. 11. Variations of the objective function of the optimization
process for 3D FBM arrays with H=0.3 (dashed curve), H=0.5
(dashed-dotted curve), and H=0.8 (solid curve).

tropolis algorithm [i.e., based on a probability proportional to
the Boltzmann’s factor, exp(~AE/T)]. In any case, we go
back to step (4), but keeping track of the number of accepted
changes. In addition, we also define and set a maximum
number of iterations at each temperature, and a maximum
cumulative total change in the energy. When the number of
accepted energy changes reach a suitable, a priori specified
number, or when the maximum allowed changes in the en-
ergy is reached or exceeded, step (6) described below is un-
dertaken. Typically, at the initial steps of the SA process (at
high temperatures) the accepted changes are achieved before
the maximum allowed change is reached or exceeded. At
very low temperatures, on the other hand, the maximum al-
lowed changes in the energy are reached before the accepted
number of changes reaches its prespecified number, as the
number of rejections are large at such temperatures.

(6) The temperature is lowered according to the schedule,
Thew=R7T,4, where we used R;y=0.9 or 0.99.

We also test for convergence to the optimal system. If at
any stage AF is less than some prespecified value, the itera-
tion is terminated. If not, the temperature is lowered accord-
ing to the above schedule (after a suitable number of ac-
cepted changes is obtained, or if the maximum allowed
change is reached or exceeded), and the iteration process
continues. The total number of iterations for achieving con-
vergence depends on the system’s size and the value of the
Hurst exponent H. Convergence is typically reached after the
maximum allowed change in the system’s energy is achieved
or exceeded two or three times.

B. Anisotropic systems

Many natural systems are anisotropic. In particular, in
large-scale porous media, such as oil reservoirs, the aniso-
tropy is often caused by stratification, manifested by the ex-
istence of many layers that have very different properties.
Alternatively, the anisotropy may also be caused by having
distinct distributions in the vertical direction and horizontal
planes. Such systems are no longer characterized by a single
correlation function, but by direction-dependent correlation
functions. Hence, to utilize the above algorithm for generat-
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ing long-range correlations in an anisotropic medium, we
define a series of direction-dependent correlation functions.
Consider, for example, the 2D systems. We assume the size
of the system to be N, X N,, and define suitable correlation
functions in the x and y directions, C,(r)=C,7*"x and
C,(r)=C,;r*". The objective function to be minimized is
then given by

N, N2
E=2 2 |log C(r;,r;) - 2H, log(r;) — log(C,,)|
j=1 i=1
Ny N2
+ 2 2 |1Og Cy(rhrj) - 2Hy log(r]) - log(Cyl)| . (9)

i=1 j=1

Generalization of Eq. (9) to 3D systems is straightforward.

Note that allowing for distinct, direction-dependent values
of the Hurst exponent is motivated by the fact that field scale
data often indicate distinct Hurst exponents for the vertical
direction and in the planes perpendicular to it. Physically,
this is understandable as the strata are roughly parallel to
each other and to the ground surface. Since the strata have
contrasting properties, one expects to have negative correla-
tions in the vertical direction, characterized by H,<0.5,
while in the planes of the strata (within the strata) one ex-
pects to have positive correlations with H,=H,>0.5. Al-
though the contrasting properties of the strata can also be
associated with a stochastic fluctuation term with a large
variance, extensive field data for many oil reservoirs do con-
firm [3] the expectation of having H<0.5 in the vertical
direction and H>0.5 within the strata more or less parallel
to the ground surface. Note also that none of the existing
methods can generate long-range correlations with distinct,
direction-dependent Hurst exponents.

During the SA iteration, we utilize the following algo-
rithm in order to change the value B(i,j) attributed to site
(i,/) on a 2D lattice, which is a generalization to anisotropic
systems of the algorithm described by Egs. (7) and (8):

Bnew(i»j)zB(i+l’j)+R (10)
or
Bnew(i’j)=B(i_1’j)+R (11)

with equal probabilities, and

C,
Boey (i) =Bi.j+1) + (ELI>R (12)
x1
or
. . Ci
Boew(i,j))=B(i,j— 1)+ EL R, (13)
x1

again with equal probabilities, where R is a random number
distributed according to a Gaussian distribution. The gener-
alization to 3D systems is straightforward. The rest of the
optimization algorithm is the same as that for the isotropic
systems described above.

PHYSICAL REVIEW E 73, 056121 (2006)

III. RESULTS AND DISCUSSION

We now present the results and discuss the accuracy and
efficiency of the method.

A. Accuracy of the method

Figure 1, mentioned in the Introduction, presents ex-
amples of 1D FBM arrays generated by the optimization
method described above. The corresponding correlation
functions C(r) are shown in Fig. 2, where they presented as
the logarithmic plot of C(r). In this and the following figures
the distance r is measured in units of the distance between
two nearest-neighbor sites in the lattice. The straight lines
shown in Fig. 2 indicate that the correct correlation function
has been generated by the SA method. Note that, for H
>0.5, the correlation function at the highest value of r is
slightly bent. This is a finite-size effect, which is also seen
for higher-dimensional FBM arrays described below. At the
same time, we note that, over large ranges of » and for cer-
tain values of the parameter y of Eq. (3), the correlation
functions that are generated by the method of Makse et al.
[8] are very irregular, even in log-log plots (see their Fig. 1).

Figure 3 shows the correlation functions for 2D isotropic
FBM arrays and two values of the Hurst exponent H. The
size of the array is 200 X 200 and, once again, the correlation
function follows very precisely the expected behavior indi-
cated by Eq. (1). The corresponding samples of 2D FBM
arrays are presented in Fig. 4, where the darkest and lightest
regions indicate, respectively, the highest and lowest values.

Next, we consider 2D anisotropic systems, with the aniso-
tropy generated by stratification, or by having distinct distri-
butions in different directions. Figure 5 presents the
direction-dependent correlation functions C.(r) and Cy(r) for
two values of the Hurst exponent H=H,=H,. Once again, all
the 1D correlation functions follow precisely the expected
behavior. The corresponding 2D samples of the FBM arrays
are shown in Fig. 6. The orientation and the number of layers
can be varied by changing the ratio C,,/C,,. As pointed out
above, one may also have anisotropic media that are charac-
terized by distinct values of H, and H, (in 3D, H,=H,# H.).
An example is shown in Fig. 7, with its corresponding cor-
relation functions shown in Fig. 8.

The accuracy of the method in generating 3D arrays is
similar to those for 1D and 2D arrays. Figure 9 presents the
correlation function C(r) for a 60X 60X 60 lattice and two
values of the Hurst exponent H which demonstrates, once
again, the accuracy of the method in generating 3D corre-
lated arrays with a correlation function that follows Eq. (1).
The corresponding 3D FBM samples are shown in Fig. 10.

B. Efficiency of the method

Figure 11 presents the behavior of the objective or energy
function E in isotropic 3D systems, exhibiting the trends dis-
cussed above. For all values of H, the objective function first
reaches a maximum, and then decreases. The trends will not
change if the initial distribution that we begin the SA algo-
rithm with is changed to a uniform or some other type of
distribution function, since one complete sweep of the sys-
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TABLE 1. Comparison of the computation time (in CPU sec-
onds) of four methods of generating a 200X 200 FBM array with
the Hurst exponent H=0.3, which are fast Fourier transformation
(FFT), successive random addition (SRA), the Weierstrass-
Mandelbrot (WM) function, and simulated annealing (SA) sug-
gested in the present paper.

FFT SRA WM SA

0.3 0.6 0.6 8

tem completely changes the initial distribution. The trends do
not change for anisotropic media either. Completely similar
trends are obtained for 1D and 2D media and, therefore, are
not shown.

In general, our experience is that Hurst exponents H
< 0.5 require about one order of magnitude fewer iterations
of the SA algorithm than those for H>0.5, in order to con-
verge to the desired correlation function. We believe, based
on our experience, that the reason might be due to the fact
that H<<0.5 generates negative or anticorrelations, implying
that a high (low) value at any point of the array is likely to be
followed by a low (high) value. The magnitude of such
changes does, of course, depend on the magnitude of the
Gaussian random number R. But, in any case, a medium with
H<0.5 is, in some sense, more disordered than one with
H>0.5. Therefore, since for each iteration of the SA algo-
rithm, we change the values of the array according to Egs.
(7), (8), and (10)—(13) (and their analogs in higher dimen-
sions) using Gaussian numbers R, it might, in some sense, be
easier to generate negative correlations as R is selected at
random from a Gaussian distribution. At the same, we should
keep in mind that after one complete sweep of the initial
guess, its structure is destroyed and becomes random. The
new random distribution corresponds to one with H=-d/3
[see Eq. (2)]. It is clearly easier (it requires fewer iterations)
to construct a FBM distribution with a smaller H closer to a
random distribution. While our argument might be plausible,
one can also argue that, in general, one expects the rate of
convergence to depend on the magnitude of the random vari-
able R in Egs. (7), (8), and (10)—(13). At the same time,
negative or positive correlations depend on the compared
signs of successive increments, and are properties that char-
acterize the correlations of the random jumps for both H
<0.5 and H>0.5. Therefore the randomness of the incre-
ments should not be more particularly associated with posi-
tive correlations than to negative ones.
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The method presented in this paper is slower than those
based on the spectral density by about one order of magni-
tude. For example, Table I compares the required CPU times
for generating a 200 X 200 FBM array, using the three meth-
ods described in the Introduction, as well as the method pro-
posed in this paper based on simulated annealing. All the
times are for a Pentium-4 desktop (with a 2.8 GHz CPU).
However, as discussed above, the method proposed in the
present paper has a few distinct advantages over the previous
techniques of generating long-range correlations.

(1) The method is designed precisely for some important
physical problems involving optimization, for which other
methods of generating long-range correlations (see the Intro-
duction) cannot be used. For example, none of the previous
methods can generate long-range correlations, and at the
same time honor (preserve) experimental data for the system
under study.

(2) The method is, on its own, still efficient in terms of the
computation time that it requires and, therefore, can be used
for generation of long-range correlations in systems with
hundreds of thousands of points or more.

(3) In practice, the algorithm proposed here is incorpo-
rated into a larger optimization problem involving many pa-
rameters (data) and constraints imposed on the system. In
that case, the computation time for generating the long-range
correlations by the method proposed in this paper is a very
small fraction of the total computation time [16].

IV. SUMMARY

Formulating generation of long-range correlations in large
systems as an optimization problem, we developed an algo-
rithm based on simulated annealing that generates the de-
sired correlations, but also honors experimental data that are
to be incorporated in the model. The method is completely
general and applicable to d-dimensional isotropic as well as
anisotropic systems. In addition, it is applicable to any type
of correlation function for the data. The method is also effi-
cient and, therefore, can be used for generating correlations
in large systems.
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